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Abstract
The distribution of atoms in quasi-crystals lacks periodicity and displays
point symmetry associated with non-crystallographic modules. Often it can
be described by quasi-periodic tilings on R

3 built from a finite number of
prototiles. The modules and the canonical tilings of five-fold and icosahedral
point symmetry admit inflation symmetry. In the simplest case of stone
inflation, any prototile when scaled by the golden section number τ can be
packed from unscaled prototiles. Observables supported on R

3 for quasi-
crystals require symmetry-adapted function spaces. We construct wavelet bases
on R

3 for the icosahedral Danzer tiling. The stone inflation of the four Danzer
prototiles is given explicitly in terms of Euclidean group operations acting
on R

3. By acting with the unitary representations inverse to these operations
on the characteristic functions of the prototiles, we recursively provide a full
orthogonal wavelet basis of R

3. It incorporates the icosahedral and inflation
symmetry.

PACS number: 61.44.Br

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We are interested in the construction of wavelets on quasi-periodic tilings (see also [8]).
Wavelet bases are suited to analyse functions on quasi-crystals such as densities, electron and
phonon states. Incorporation of specific tiling properties such as inflation will improve the
efficiency of wavelet analysis. The simplest tilings are the ones with stone inflation. For these,
any inflated tile can be packed from a finite set of prototiles. For functions with domains on the
tiles this leads to very simple decompositions. The explicit construction of orthogonal wavelet
bases for the Penrose–Robinson and the triangle tiling was given in [7]. We wish to extend this
construction to three-dimensional icosahedral tilings, which are known to model stable classes
of quasi-crystals [11]. As shown in [7], a basic step is to write the stone inflation of the tiling
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Figure 1. Icosahedron and axes e1, . . . , e6.

in explicit form using operations from the Euclidean group IO(3, R) in E3. These Euclidean
operations can then be lifted into linear unitary representations acting on the function spaces
for wavelets. In what follows, we construct these Euclidean operations and the wavelets for
the three-dimensional icosahedral Danzer tiling [5].

2. Icosahedral basis vectors, D6 module, point groups

The extension of classical crystallography to quasi-crystals uses a module description as tools,
see [14]. We shall need the primitive icosahedral P-module and the face-centred icosahedral
F-module related to the root lattice D6. These two modules are icosahedral projections from
the primitive and the face-centred hypercubic lattice in six dimensions [11, 12].

The basis of the icosahedral primitive P-module in E‖ (parallel space) is

〈ei, i = 1, . . . , 6〉. (1)

These vectors are projections of six orthogonal unit vectors in E6. Under icosahedral
projection to E‖ they point along six five-fold icosahedral axes and all have the standard
length |ei | = (5) = √

1/2 (see figure 1). We shall use a bar overlining to denote a minus sign
in front of a symbol.

For algebraic expressions w.r.t. a standard orthogonal basis, see [10]. In matrix form we
have

〈e1, e2, e3, e4, e5, e6〉 =
√

1/2


0 s s c 0 c

s c c 0 s 0
c 0 0 s c s


 (2)

where s = sin β, c = cos β, cot β = τ = (1 +
√

5)/2, thus s = (τ + 2)−1/2 and c = τs. A
basis of the icosahedral face-centred 2F = D6-module is

〈e1 − e5, e2 + e4, e3 + e6, e2 + e3, e3 + e1, e1 + e2〉. (3)

The holes (vertices of Voronoı̈ domains) of the lattice D6 are of three types a, b, c with
representatives, expressed by their coefficients in the basis equation (1),

a = 1
2 (111111) + D6 c = 1

2 (111111) + D6 b = 1
2 (200000) + D6. (4)

For the rotation axes of the icosahedral group, we introduce three sets of vectors along five-,
two-, and three-fold axes. They are enumerated for each axis and indexed by the axis label:
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i5 |i5| = (5)

i5 = ei i = 1, . . . , 6

j2 |j2| = (2)

12 = e1 − e5 22 = e1 − e4 32 = e1 − e2 42 = e1 − e3

52 = e1 − e6 62 = e2 + e4 72 = e3 + e5 82 = e4 + e6

92 = e5 + e2 102 = e6 + e3 112 = e4 − e3 122 = e5 − e4

132 = e5 − e6 142 = e6 − e2 152 = e2 − e3.

(5)

l3 |l3| = (3)

13 = (e1 + e2 + e3 − e4 + e5 − e6)/2 23 = (e1 + e3 + e4 + e6 − e5 − e2)/2

33 = (e1 + e4 + e5 + e2 − e6 − e3)/2 43 = (e1 + e6 + e5 + e3 − e4 − e2)/2

53 = (e1 + e6 + e2 + e4 − e3 − e5)/2 63 = (e2 + e3 − e5 + e6 + e4 − e1)/2

73 = (e3 + e4 − e6 + e2 − e1 + e5)/2 83 = (e4 + e5 − e2 + e3 − e1 + e6)/2

93 = (e6 + e5 − e3 + e2 + e4 − e1)/2 103 = (e2 + e6 − e4 + e3 + e5 − e1)/2.

(6)

A standard choice for the length of the vectors along the three axes is [10, 11]

(5) =
√

1/2 (2) =
√

2/(τ + 2) (3) =
√

3/2(τ + 2). (7)

The right-handed orthonormal triple of two-fold vectors 152, 12, 82 is used for the algebraic
description of all other vectors in [10]. Along the five-fold axes it yields the expressions of
equation (2). For the stereographic representation of all axes, see [10].

We also need the axis vectors multiplied by τ but expressed in the basis 〈e1, . . . , e6〉.
The rules for the construction in terms of these six vectors are given by inspection of the
stereographic projection [10]. For each rotation axis, one can identify forward m-tuples of
five-fold vectors which form an orbit under the rotation. These m-tuples may be used to write
the inflation laws as follows:

τ i5 = (forward quintuple plus i5)/2

τ−1i5 = (forward quintuple minus i5)/2

j2 = wide forward pair

τj2 = narrow forward pair

l3 = (narrow forward triple − wide forward triple)/2

τ l3 = (narrow forward triple + wide forward triple)/2.

We shall express all operations of the icosahedral point groups as signed permutations of the
vectors ei := i in cycle notation. They could also be expressed in terms of the icosahedral
Coxeter group [9]. The generators of the icosahedral Coxeter group H3 are, upon choosing
the initial Coxeter cone with edge lines 33, 82, 15,

〈R1 = (23) (46), R2 = (45)(36), R3 = (15)(23)〉. (8)

The reflections are generated by the Weyl vectors

〈152, 122, 12〉. (9)

The Coxeter relations of H3 are

R2
1 = R2

2 = R2
3 = e (R1R2)

5 = (R2R3)
3 = (R3R1)

2 = e (10)

where e means the identity.
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Table 1. Standard position for Danzer prototiles: name, set of vertices, hole types, set of opposite
outer normals and volume.

Prototile Vertices Hole type Outer normals Volume

A (0, 45, 82, 63) (c, a, c, b) (62, 152, 92, 12) τ 2/2

A′ (0, 65, 82, 63) (c, a, c, b) (102, 152, 72, 12) τ 2/2
B (0, τ33, 82, τ15) (b, a, b, c) (42, 152, 122, 12) τ/2

B ′ (0, τ43, 82, τ15) (b, a, b, c) (32, 152, 132, 12) τ/2
C (0, τ33, τ82, 15) (a, b, a, c) (62, 152, 122, 12) τ/2

C′ (0, τ43, τ82, 15) (a, b, a, c) (102, 152, 132, 12) τ/2
K (0, 45, 82/2, τ−115) (a, c,−, b) (82, 152, 142, 12) 1/4

K ′ (0, 65, 82/2, τ−115) (a, c,−, b) (82, 152, 112, 12) 1/4

3. The Danzer tiles

The Danzer tiling [4, 5] belongs to the 2F = D6 icosahedral module. It can be projected and
derived by local rules from a canonical icosahedral tiling [12] (T ,D6). The latter tiling has
six tiles which are projections of three-dimensional faces from the Voronoı̈ domains of the D6

lattice [10, 11]. This allows us to use the projection and window technique for the Danzer
tiling. The Danzer tiling is also equivalent [6] to the Socolar–Steinhardt tiling [15].

The four tetrahedral prototiles are named [5] {A,B,C,K}. All edges of the prototiles
run along five-, two- and three-fold icosahedral axes. All faces are perpendicular to two-fold
axes. Each prototile has a mirror image which we denote for short by {A′, B ′, C ′,K ′}. In the
Danzer tiling, four prototiles of the two types X,X′ always appear glued to octahedra. We
shall not use these octahedra but can see their appearance in the packings of inflated prototiles.

For an explicit algebraic description of the prototiles we choose for each prototile a
reference vertex 0 and a standard orientation. For each prototile, we give in table 1 the vertex
set in standard orientation and the outer normal vectors i2 of the opposite face. For the mirror
images of the four prototiles we shall use the prescription

X′ = (23) (46)X. (11)

The volumes4 we write as fractions of the standard volume

V0 = (τ−2/15)

√
τ + 2

2
. (12)

In table 1 we give in column 3 the hole type a, b, c of the four vertices according to
equation (4).

Note that the third vertex of the prototiles K,K ′ is not a hole position. In the Danzer
tiling it is completely covered by the octahedron formed from tiles K,K ′. The positions of
all defined tiles are demonstrated in figure 2.

4. Inflation of the Danzer prototiles

The Danzer tiling T admits a stone inflation [4, 5] and in fact was constructed by this stone
inflation: any prototile X ∈ T when scaled by a factor τ can be packed face to face without
gaps or overlaps from a set of translated and rotated prototiles. We call this the inflation of
the prototiles. We denote by X → τX a linear scaling of the tile X with respect to its chosen

4 Note for the reader: all tetrahedra have one vertex at the point [0,0,0] and the three others at points [xi , yi , zi ], i =
1, 2, 3. Their volume can be calculated as V = 1

6 |D|, where D =
∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣.
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Figure 2. Tiles A, A′, B, B ′, C, C′,K,K ′ and their positions in the icosahedron.

origin. Note that this origin in general is not the projection of a D6 lattice point but rather the
projection of a hole point (compare table 1). Inflation is a symmetry operation of the lattice D6

when applied with respect to lattice points. With respect to hole points, inflation transforms
classes of hole points into one another. When we apply inflation to the prototiles of the Danzer
tiling, their vertices being projected as hole points are transformed into one another.

For the wavelet construction, we need explicit algebraic expressions of the inflation in
terms of Euclidean group operations. We shall use the set of prototiles in the standard position
according to table 1 along with their mirror images for the inflation. A prototile Xj that
participates in the packing of the inflated tile τX is first rotated by a point group element
gj and then translated by a vector tj . By writing Xj → (tj , gj )Xj we denote an Euclidean
operation on the prototile Xj . Here γj := (tj , gj ) is an element of the Euclidean group
IO(3, R) acting on E3, a rotation gj followed by a translation tj .

In the inflation of a fixed Danzer prototiles, a given prototile may participate in the packing
more than once. In this case we need a second subscript to distinguish the corresponding
occurrences. The inflation of the tile X ∈ {A,A′, B, B ′, C,C ′,K,K ′} then takes the general
form of a sum of Euclidean operators applied to the prototiles,

τX =
∑

j


∑

lj

(tj,lj , gj,lj )Xj


 . (13)

Inflation commutes with the full point group. Once we have obtained the inflation of τX, we
obtain the inflation of τX′ from τX′ = τ((23) (46))X = (23) (46)(τX) by the application
of (23) (46) to the right-hand side of equation (13). On the right-hand side we can make
the replacements Xj = (23) (46)X′

j , X
′
j = (23) (46)Xj . If this is done, the elements of the

Euclidean group appearing in equation (13) are conjugated with (23) (46) according to

(tj,lj , gj,lj ) → (0, (23) (46))(tj,lj , gj,lj )(0, (23) (46)). (14)

Inflation transforms the holes (a, c, b) into one another. From equation (4) and from the
inflation rules for the vectors one finds in terms of classes the transformation rules

τa = c τc = b τb = a. (15)

The vertices of the tiles belong to definite hole classes, and so the transformations,
equation (15), apply to the vertices of the tiles upon τ -inflation.

We are now ready to give explicitly the expressions, equation (13), for the eight prototiles.
For the inflation of the tiles {A′, B ′, C ′,K ′} we apply equation (14).

In future constructions we shall apply inflation or its inverse to prototiles in positions and
orientations other than the standard one. The corresponding decompositions under inflation
can be obtained from equation (13) and table 2 by applying an element of the Euclidean group
on both sides of equation (13) and using the multiplication rules for this group.
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Table 2. Inflation of prototiles {A, A′, B, B ′, C,C′, K, K ′}.
τ A=
(translation , rotation ) prototile

(τ82 = e1 + e5 , (15634) ) B

+(τ82 = e1 + e5 , (22)(55)(16)(34) ) B ′

+(τ82 = e1 + e5 , (44)(66))(15)(23) ) B ′

+(τ63 = (e2 + e3 − e5 − e4 − e6 + e1)/2 , (15263) ) C

+(τ63 = (e2 + e3 − e5 − e4 − e6 + e1)/2 , (15263) ) C′

+(τ−145 = (e1 + e3 − e6 − e2 + e5 − e4)/2 , (13625) ) K

+(τ−145 = (e1 + e3 − e6 − e2 + e5 − e4)/2 , (25364) ) K

+(τ−145 = (e1 + e3 − e6 − e2 + e5 − e4)/2 , (142)(356) ) K

+(τ−145 = (e1 + e3 − e6 − e2 + e5 − e4)/2 , (25364) ) K ′

+(τ−145 = (e1 + e3 − e6 − e2 + e5 − e4)/2 , (13625) ) K ′

+(τ−145 = (e1 + e3 − e6 − e2 + e5 − e4)/2 , (162)(354) ) K ′

τA′ =
(translation , rotation ) prototile

(τ82 = e1 + e5 , (15426) ) B ′

+(τ82 = e1 + e5 , (33)(55)(14)(26) ) B

+(τ82 = e1 + e5 , (66)(44))(15)(23) ) B

+(τ63 = (e3 + e2 − e5 − e6 − e4 + e1)/2 , (15342) ) C′

+(τ63 = (e3 + e2 − e5 − e6 − e4 + e1)/2 , (15342) ) C

+(τ−165 = (e1 + e2 − e4 − e3 + e5 − e6)/2 , (12435) ) K ′

+(τ−165 = (e1 + e2 − e4 − e3 + e5 − e6)/2 , (35246) ) K ′

+(τ−165 = (e1 + e2 − e4 − e3 + e5 − e6)/2 , (163)(254) ) K ′

+(τ−165 = (e1 + e2 − e4 − e3 + e5 − e6)/2 , (35246) ) K

+(τ−165 = (e1 + e2 − e4 − e3 + e5 − e6)/2 , (12435) ) K

+(τ−165 = (e1 + e2 − e4 − e3 + e5 − e6)/2 , (143)(256) ) K

τB =
(translation , rotation ) prototile

(τ 215 = (e2 + e3 + e4 + e5 + e6 + 3e1)/2 , (11)(66)(25)(34) ) B

+(τ 215 = (e2 + e3 + e4 + e5 + e6 + 3e1)/2 , (125)(346) ) B ′

(0 , e ) C

+(τ82 = e1 + e5 , (132)(456) ) K

+(τ82 = e1 + e5 , (16532) ) K

+(τ82 = e1 + e5 , (16532) ) K ′

+(τ82 = e1 + e5 , (132)(456) ) K ′

τB′ =
(translation , rotation ) prototile

(τ 215 = (e2 + e3 + e4 + e5 + e6 + 3e1)/2 , (11)(44)(35)(26) ) B ′

+(τ 215 = (e2 + e3 + e4 + e5 + e6 + 3e1)/2 , (135)(264) ) B

+(0 , e ) C′

+(τ82 = e1 + e5 , (123)(654) ) K ′

+(τ82 = e1 + e5 , (14523) ) K ′

+(τ82 = e1 + e5 , (14523) ) K

+(τ82 = e1 + e5 , (123)(654) ) K

τC =
(translation , rotation ) prototile
(τ82 = e1 + e5 , e ) A

+(τ 233 = (e1 + e4 + e5) , (33)(55)(14)(26) ) C

+(τ 233 = (e1 + e4 + e5) , (33)(55)(14)(26) ) C′

+(15 = e1 , (124)(365) ) K

+(15 = e1 , (124)(365) ) K ′
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Table 2. (Continued.)

τC ′ =
(translation , rotation ) prototile
(τ82 = e1 + e5 , e ) A′

+(τ 243 = (e1 + e6 + e5) , (22)(55)(16)(34) ) C′

+(τ 243 = (e1 + e6 + e5) , (22)(55)(16)(34) ) C

+(15 = e1 , (136)(245) ) K ′

+(15 = e1 , (136)(245) ) K

τK =
(translation , rotation ) prototile

(τ45 = (e1 + e3 − e6 − e2 + e5 + e4)/2 , (142)(356) ) B

+(15 = e1 , (124)(365) ) K

τK ′ =
(translation , rotation ) prototile

(τ65 = (e1 + e2 − e4 − e3 + e5 + e6)/2 , (163)(254) ) B ′

+(15 = e1 , (136)(245) ) K ′

In figure 3, we present all basic tiles {A,B,C,K} in a bounding box, their surfaces
cut by decomposition rules and edges of all composites. In figures 4, 5 and 6 we can see
visualizations of decomposition rules from table 2 for the tiles A,B, C and K respectively.
The sequence of pictures corresponds exactly with the sequence of tiles in table 2.

5. Haar wavelets for the Danzer tiling

We now construct an orthonormal Haar wavelet basis of L2(R3) associated with Danzer tiling
T of R

3. We recall that the Danzer tiling T of R
3 is a set of compact tiles (Pm)m∈N with the

following properties:

(i)
⋃

m∈N
Pm = R

3,

(ii) Pi ∩ Pj ⊂ R
2 for i 
= j ,

(iii) there is a finite set of prototiles A = {Ti}8
i=1 = {A,A′, B, B ′, C,C ′,K,K ′} such that any

tile Pm results from a translation and rotation (linear-affine transformation) of an element
of A, (this means that Pm = γkTk where 1 � k � 8 and γk ∈ �k . The set �k is the set of
all admissible linear-affine transformations of a particular tile Tk .)

(iv) for all m ∈ N, τPm is the union of finitely many Pi , see table 2,
(v) σT ⊂ T , where σ is the stone-inflation transformation.

Let us define a sequence of spaces (Vj (T ))j∈Z such that each space Vj (T ) is a closed
subspace of L2(R3) of functions which are constant on all tiles σ−jPm,m ∈ N. We denote
by γi = (ti , gi) a translation-rotation in the Euclidean group IO(3, R) which brings a tile Ti

to one of its congruent companions in the tiling, and by �i the set of these operations.

Proposition 1. The sequence (Vj (T ))j∈Z is a σ -multiresolution analysis of L2(R3). Thus it
obeys the following properties:

(i) For all j ∈ Z, Vj−1(T ) ⊂ Vj (T ),

(ii)
⋃

j∈Z
Vj (T ) is dense in L2(R3),

(iii)
⋂

j∈Z
Vj (T ) = {0},

(iv) for all j ∈ Z, x ∈ R
3, f (x) ∈ Vj (T ) ⇐⇒ f (σ−j x) ∈ V0(T ),

(v) there exist eight scaling functions, φ1(x), φ2(x), . . . , φ8(x) such that all their admissible
linear-affine transformations

{
φi

(
γ −1

i ·x)}
1�i�8,γi∈�i

form an orthonormal basis in V0(T ).
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A

B

C

K

Figure 3. The tiles A, B, C and K .

Proof.

(i) This inclusion results from the stone-inflation property of tiling T , σT ⊂ T .
(ii) This is true through the fact that every continuous function f with a compact support on

R
3 can be written as the uniform limit of the sequence (fj )j�0 such that

fj (x) =
∑
m∈N

f (xj,m)χσ−j Pm
(x)

where xj,m ∈ σ−jPm and χσ−j Pm
(x) is the characteristic function of the tile σ−jPm.

(iii) By construction, it is clear that only the function f (x) = 0 is included in all spaces Vj (T ).
(iv) Let us choose f (x) ∈ Vj (T ). Then we have

f (x) =
∑
m∈N

cmχσ−j Pm
(x) with

∑
m∈N

|cm|2 < ∞

and this is equivalent to

f (σ−j x) =
∑
m∈N

cmχPm
(x).

Thus f (σ−j x) ∈ V0(T ).
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τA

Figure 4. Decomposition of tile τA resulting from table 2.

τB

Figure 5. Decomposition of tile τB resulting from table 2.

(v) We have eight scaling functions φ1(x), φ2(x), . . . , φ8(x) which are the characteristic
functions of the corresponding prototiles Ti, i = 1, . . . , 8, normalized by division with
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τC

τK

Figure 6. Decomposition of tiles τC and τK resulting from table 2.

the square root of the volume of the tile, e.g., for a tile X ∈ A

φX(x) = χX(x)/
√

|X|
where |X| means the volume of the tile X. Due to the normalization, we see that all
admissible linear-affine transformations γi ∈ �i of eight functions {φi}8

i=1 form an
orthonormal basis of V0(T ). �

The construction of the Haar wavelets basis for L2(R3) associated with stone-inflation Danzer
tiling T will be done in the following way [1, 2, 7]. We recall that we have a sequence of
spaces Vj (T ) forming a σ -multiresolution analysis of L2(R3) and eight prototiles in tiling
T ,A = {Ti}8

i=1 = {A,A′, B, B ′, C,C ′,K,K ′}. For each prototile Ti, 1 � i � 8 there are
finitely many tiles Pij , such that:

σTi = Pi1 ∪ · · · ∪ Piki
⇐⇒ Ti = σ−1Pi1 ∪ · · · ∪ σ−1Piki

.

Now we denote by V0,Pm
(T ) a subspace of V0(T ) of functions which are zero (almost

everywhere) outside the tile Pm. Consequently, we define Vj,Pm
(T ) as a subspace of Vj (T )

of functions equal to zero (almost everywhere) outside the tile Pm. Therefore, we obtain
orthogonal decompositions:

V0(T ) =
⊕
m∈N

⊥V0,Pm
(T ) (16)

Vj (T ) =
⊕
m∈N

⊥Vj,Pm
(T ) (17)

and the inclusion

V0,Pm
(T ) ⊂ V1,Pm

(T ) ⊂ · · · ⊂ Vj,Pm
(T ) ⊂ · · · . (18)
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Then the wavelet space W0(T ) is an orthogonal complement of V0(T ) in V1(T ),

V1(T ) = V0(T ) ⊕⊥ W0(T ). (19)

More generally

Vj+1(T ) = Vj (T ) ⊕⊥ Wj(T ).

We can also define an orthogonal complement of Vj,Pm
(T ) in Vj+1,Pm

(T ) as

Vj+1,Pm
(T ) = Vj,Pm

(T ) ⊕⊥ Wj,Pm
(T ) (20)

thus we have

Wj(T ) =
⊕
m∈Z

⊥Wj,Pm
(T ).

And consequently we have

L2(R3) =
⊕
j∈Z

⊥Wj(T ).

Thus, the construction of W0(T ) is equivalent to the construction of all W0,Pm
(T ). Since any

tile Pm can be written as

Pm = γiTi = γi

(
σ−1Pi1 ∪ · · · ∪ σ−1Piki

)
γi ∈ �i

it is sufficient to find wavelets for our prototiles Ti, i = 1, . . . , 8, and the whole basis of W0(T )

will be formed by all admissible linear-affine transformations of these ‘protowavelets’. There
results the following proposition:

Proposition 2. For every prototile Ti, i = 1, . . . , 8, given also by

Ti = σ−1Pi1 ∪ · · · ∪ σ−1Piki

we have ki − 1 orthonormal wavelets ψ1,i (x), . . . , ψki−1,i (x).

Proof. Let us denote by V0,Ti
(T ) the space of functions constant on tile Ti and equal

to zero otherwise. We then denote by V1,Ti
(T ) the space of functions constant on tiles

σ−1Pi1 , . . . , σ
−1Piki

and otherwise equal to zero. The space of wavelets corresponding to the
tile Ti is found as the orthogonal complement V0,Ti

(T ) in V1,Ti
(T ), i.e.

V1,Ti
(T ) = V0,Ti

(T ) ⊕⊥ W0,Ti
(T ).

The space V1,Ti
(T ) is a linear span of ki linearly independent functions

{
χσ−1Pi1

(x), . . . ,

χσ−1Piki

(x)
}
, the space V0,Ti

(T ) consists of only one function χTi
(x) and its multiples. Thus,

the space W0,Ti
(T ) has to be ki − 1 dimensional. We get an orthonormal basis of W0,Ti

(T ) by
an application of the following lemma: �

Lemma 1. Given n orthogonal characteristic functions χ1, . . . , χn on a unitary space with
the scalar products

〈χi, χj 〉 = δij‖χi‖2 = δij (fi)
2 (21)

a new orthonormal set ϕ1, . . . , ϕn can be constructed from them as

ϕ1 := f2

F2f1
χ1 − f1

F2f2
χ2

ϕ2 := f3

F3F2
(χ1 + χ2) − F2

F3f3
χ3 (22)

...
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ϕn−1 := fn

FnFn−1

n−1∑
i=1

χi − Fn−1

Fnfn

χn

(23)

ϕn := 1

Fn

n∑
i=1

χi

where Fm is defined by

Fm :=
[

m∑
i=1

(fi)
2

]1/2

. (24)

This lemma gives a simple procedure of how to obtain from an orthogonal basis of
V1,X(T ),X ∈ A, formed by n characteristic functions living on corresponding subtiles,
an orthonormal basis of W0,X(T ). The last function ϕn is proportional to the sum of the
characteristic functions of all subtiles, thus it is the normalized characteristic function of tile
X,ϕn = χX(x)/

√|X|. The orthonormality condition for the functions constructed assures that
the remaining functions ϕ1, . . . , ϕn−1 form an orthonormal basis of W0,X(T ). We note that
one can interpret figures 4–6 as a visualization of the basis (created by characteristic functions
of corresponding subtiles) of V1,X(T ),X ∈ A.

Proposition 2 also says how many different orthonormal wavelets we need for a given
prototile. For the prototiles {Ti}8

i=1 = {A,A′, B, B ′, C,C ′,K,K ′}, we need {ki − 1}8
i=1 =

{10, 10, 6, 6, 4, 4, 1, 1} wavelets which can be found by using the previous lemma. The
orthonormal Haar wavelet basis of L2(R3) adapted to the Danzer tiling T is then given by

⋃
j∈Z

8⋃
i=1

⋃
γi∈�i

{
τ j 3

2 ψl,i

(
γ −1

i σ j · x
)}ki−1

l=1 .

The construction of Haar wavelets for any stone-inflation n-dimensional tiling can be easily
derived from the present example.

6. Characteristic functions and boundaries of the Danzer tiling

The wavelet basis was constructed from the characteristic functions χXi
(x) on the tiles Xi ∈ T .

For two adjacent tiles Xi,Xj , the additive property

χ{Xi∪Xj }(x) = χXi
(x) + χXj

(x) (25)

holds true for all strictly exterior points x ∈ Ext(Xi ∪ Xj) and for the interior points
x ∈ Int(Xi), x ∈ Int(Xj ), but fails for points on the boundary x ∈ (Xi ∩ Xj) (which
form a set of measure zero). To have the additive property, equation (25), for all x ∈ R

3, and
to represent functions with non-zero values on points of boundaries, appropriate values of the
characteristic functions must be specified on all the boundaries of the tiling.

Suppose it were possible to link any boundary in the Danzer tiling T in a unique local
way to a single tile Xi . Then it would be possible to extend the set of points with value
{x | χXi

(x) = 1} from the interior x ∈ Int(Xi) to all the points on all boundaries linked to it,
and the additive property equation (25) would hold true on R

3.
We shall give here one possible solution for this local linkage of boundaries to tiles. We

(I) interpret T as a locally finite simplicial complex, (II) associate sets of unit vectors with
all simplices and (III) select from the set of simplices bounded by any fixed simplex a unique
simplex chain of increasing dimension which ends on a unique 3-simplex.



Inflation and wavelets for the icosahedral Danzer tiling 3455

(I) The Danzer tiling T consists of 3-simplices (tetrahedral tiles) bounded by subsimplices
(triangles, edges, vertices) of dimensions p = 2, 1, 0. Any intersection of simplex
boundaries is another simplex boundary of T , and any pair of distinct simplices have
disjoint interiors. Therefore, T is a simplicial complex as defined in algebraic topology
[13, p 7]. Moreover, since any subsimplex belongs to only finitely many (sub-)simplices,
the simplicial complex T is locally finite [13, p 11].

(II) We denote the simplices of T of dimension p = 2, 1, 0 by σ(p), distinguish them if
necessary by greek indices and associate outer unit vectors n(σ(p)) with them. The unit
vectors allow us to classify the bounding property σ(p) ⊂ σ(p + 1), p = 2, 1, 0.

It will be necessary to distinguish unit vectors of opposite direction: at all points of R
3

we choose the same set of polar coordinates θ, φ on the unit sphere S2 and define the upper
half-sphere by S2,+ = {(θ, φ) | {0 � θ < π/2, 0 � φ < 2π} ∪ {θ = π/2, 0 � φ < π}}.
The unit vectors n(σ(2)) ∈ S2,+ we order by the relation nσ(α) ≺ nσ(β) ↔ θα <

θβ or θα = θβ, φα < φβ .

p = 2: To any 2-simplex boundary σ(2) of a 3-simplex σ(3) ∈ T , we associate four
unit vectors n(σ(2)) normal to the 2-simplex and pointing outward w.r.t. σ(3). These
vectors for tiles in standard position up to normalization were given in table 1. Clearly
for σ(2) ∈ T , any such unit vector n(σ(2)) points along one of the 15 two-fold axes
of the icosahedral group. To a given 2-simplex σ(2) are associated two normal outer
vectors n(σ(2, µ)), n(σ (2, µ′)) of opposite direction, corresponding to two 3-simplices
σ(3, µ), σ (3, µ′) bounded by σ(2).

p = 1: To any 1-simplex σ(1) bounding a 2-simplex σ(2) we associate a unit vector
n(σ(1)) perpendicular to the 1-simplex, in the plane embedding σ(2), and pointing
outward from σ(2). The 1-simplices of T , being perpendicular to at least two two-fold
axes, all are on two-fold, three-fold or five-fold axis lines of the icosahedral group. The
full set of unit vectors n(σ(1)) associated with a fixed σ(1) is distributed into all the planes
of 2-simplices bounded by σ(1). At most two vectors n(σ(1, ν)), n(σ (1, ν ′)) can be in
the same plane containing σ(1). If this happens, σ(1) bounds two different 2-simplices
σ(2, µ), σ (2, µ′) in this plane. This enforces n(σ(1, ν)) = −n(σ(1, ν ′)).

p = 0: To a 0-simplex σ(0) bounding a 1-simplex σ(1) we associate a vector n(σ(0))

within the line given by σ(1) and pointing outward from σ(1) at the end point σ(0). The
vectors n(σ(0, ν)) point along the lines of all 1-simplices bounded by σ(0). A fixed one
of them σ(1, ρ) bounds itself a set of 2-simplices σ(2, µ). A fixed σ(2, µ) bounded
by σ(0) fixes a plane perpendicular to n(σ(2, µ)) to which all vectors n(σ(1, ρ)) with
σ(0) ∈ σ(1, ρ) ∈ σ(2, µ) must belong. For fixed σ(0) and fixed n(σ(2, µ)), there can be
at most two different 1-simplices σ(1, ρ), σ (1, ρ ′) such that n(σ(1, ρ)) = n(σ(1, ρ ′)).
In this case σ(1, ρ) and σ(1, ρ ′) end at σ(0) from opposite sides and can be distinguished
by the vectors n(σ(0), ρ) = −n(σ(0), ρ ′).

The unit vectors for the 2-, 1- and 0-simplices classify all the simplices bounded by σ(0).

(III) With the help of the unit vectors n(σ(p)) we now link any σ(p) to a unique chain
σ(p) ⊂ σ(p + 1) ⊂ · · · ⊂ σ(3), p = 0, 1, 2 of bounding simplices.

p = 2: A fixed 2-simplex σ(2) bounds two 3-simplices. We link it to the 3-simplex whose
outer normal unit vector fulfils n(σ(2)) ∈ S2,+.

p = 1: A fixed 1-simplex σ(1) bounds a finite set σ(2, µ) of 2-simplices. Choosing
their normal unit vectors n(σ(2, µ)) ∈ S2,+ each one is linked to a 3-simplex. We
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determine from this set n(σ(2, µ0)) as the minimal unit vector w.r.t. the order ≺. If
there is a single 2-simplex σ(2, µ0) in the subset with n(σ(2)) = n(σ(2, µ0)) we
link σ(1) to it. Otherwise, there are two different 2-simplices σ(2, µ), σ (2, µ′) with
n(σ(2, µ)) = n(σ(2, µ′)) = n(σ(2, µ0)), and σ(1) must bound this pair of 2-simplices
σ(2, µ), σ (2, µ′) within the same plane. Then the two vectors n(σ(1), µ), n(σ (1), µ′)
pointing outward from σ(2, µ), σ (2, µ′) must have opposite direction. We select the
2-simplex with n(σ(1), µ) ∈ S2,+, link σ(1) to it and continue the chain to a unique σ(3).

p = 0: A fixed 0-simplex σ(0) bounds a finite set of 1-boundaries, each one of them linked
already to a unique 2-boundary and 3-simplex. From this set of 1-boundaries we select the
subset linked to 2-boundaries with the minimal unit vector n(σ(2, µ0)) ∈ S2,+ w.r.t. the
order ≺. If there is a single σ(1) in this subset, we link σ(0) to it and continue the chain.
If several 1-simplices σ(1, ν) form the subset associated with n(σ(2, µ0)) ∈ S2,+, all their
unit vectors n(σ(1, ν)) must be in the plane perpendicular to n(σ(2, µ0)). We order the
unit vectors for this second subset by an angle in this plane and choose a minimal one
n(σ(1, ν0)). If σ(1, ρ0) is uniquely determined by this vector, we link σ(0) to it. If not,
there are two 1-simplices σ(1, ρ0), σ (1, ρ ′

0) distinguished by vectors σ(0, ρ0), σ (0, ρ ′
0)

of opposite direction. We link σ(0) to σ(1, ρ0) such that σ(0, ρ0) ∈ S2,+ and continue
the chain to a unique σ(3).

Any boundary σ(p) of the simplicial complex T is linked by these constructions to a unique
chain of bounding simplices σ(p) ⊂ σ(p + 1) ⊂ · · · ⊂ σ(3), p = 0, 1, 2, ending with a
unique 3-simplex or tile of T . With this result we get for characteristic functions on T the
following lemma:

Lemma 2. Consider any tile Xi ∈ T . Construct its characteristic function χXi
(x) on R

3 by
assigning the value χXi

(x) = 1 to any interior point, and to any point x of a simplex chain
ending on Xi , and put χXi

(x) = 0 otherwise. Do this construction on all the tiles. Then the
characteristic functions on T have the additive property, equation (25), on the points of all
p-simplices in Xi ∩Xj linked to Xi or Xj . To assure an additive property on other p-simplices
in Xi ∩ Xj , it will be necessary to consider the tiles linked to them and their characteristic
functions.

Without going into details we assert: when the characteristic functions for wavelet bases are
extended by lemma 2, they allow for the expansion of functions which take non-zero values
only on subsimplices of T .
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[1] Andrle M, Burdı́k Č and Gazeau J P Bernuau spline wavelets and Sturmian sequences J. Fourier Anal. Appl.,
submitted
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